If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2=2116
We move all terms to the left:
2x^2-(2116)=0
a = 2; b = 0; c = -2116;
Δ = b2-4ac
Δ = 02-4·2·(-2116)
Δ = 16928
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{16928}=\sqrt{8464*2}=\sqrt{8464}*\sqrt{2}=92\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-92\sqrt{2}}{2*2}=\frac{0-92\sqrt{2}}{4} =-\frac{92\sqrt{2}}{4} =-23\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+92\sqrt{2}}{2*2}=\frac{0+92\sqrt{2}}{4} =\frac{92\sqrt{2}}{4} =23\sqrt{2} $
| u-(-8)/(-8)=(-7) | | 3a-5=16 | | -2=f+-9 | | 2y-6y=10 | | 2x + 3 = x − 4 | | 9x-3(3x+4)=12 | | 10*x=10,000,000 | | 4-(-d)=-1 | | -8x-10=38−8x−10=38 | | 5x‒2(6‒5x)=18 | | 9=g+1 | | 2x=105x=25 | | 2v+(-9)=1 | | (4x-10)=(6x-40) | | -4x0=40 | | 100x^2+3=0 | | x+2,4=38 | | 5.9-x=-4.5-5 | | 7x+4=3x-5x+4 | | -1x+12=2 | | 20u-4u^2-25=0 | | (2x+60)=(6x+40) | | -9k+8k=10 | | 1/2t+3=1/2(t+2) | | (2x+60)°=(6x+40)°= | | H(x)=11.00+0.06x | | 100x^2=-3 | | 2a2+12=212 | | 3(x-5)/2+2(x-4)/3=2/3 | | 21–6x=27–8x | | 7-b/4=-19 | | −3x + 10 = 5x − 8 |